# Maxwell's system of equations

Corresponding Wikipedia article: Maxwell's equations

The alternating electric field is not a source of the magnetic solenoidal (vortical) field. Although this property follows from the symmetry considerations, it is contrary to the magnetic field nature. For example, a constant heterogeneous electric field is variable and different for the observers, which are moving in the different ways. Consequently, each observer have its own vortical magnetic field, what is contrary to its nature.

The consequence from the magnetic and electric fields asymmetry is, that the electromagnetic waves do not exist in a form, which follows from the Maxwell's equations, which contain a mistake.

Summary table and a comparison of the aetheric electrodynamics equations and the Maxwell's classical electrodynamics equations in SI units
Maxwell's
electrodynamics
Aetheric
electrodynamics
Physical meaning of equations
$\mathbf{\overrightarrow{B}}=\mu_0\mu\mathbf{\overrightarrow{H}}$

$\mathbf{\overrightarrow{D}}=\varepsilon_0\varepsilon\mathbf{\overrightarrow{E}}$

The material equations.
$w_B=\frac{\mathbf{\overrightarrow{B}}\mathbf{\overrightarrow{H}}}{2}=\frac{|\mathbf{\overrightarrow{B}}|^2}{2\mu_0 \mu}$

$w_E=\frac{\mathbf{\overrightarrow{D}}\mathbf{\overrightarrow{E}}}{2}=\frac{\varepsilon_0\varepsilon|\mathbf{\overrightarrow{E}}|^2}{2}$

The volumetric density of the field energy,
as a cause of the electrostatic and magnetic forces.
$\oint{\mathbf{\overrightarrow{B}}\mathrm{d}\mathbf{\overrightarrow{S}}}=div\mathbf{\overrightarrow{B}}=0$ The magnetic flux is closed. The magnetic charges or the monopoles do not exist.
$Q=\oint{\mathbf{\overrightarrow{D}}\mathrm{d}\mathbf{\overrightarrow{S}}}$

$\frac{\mathrm{d}Q}{\mathrm{d}V}=div\mathbf{\overrightarrow{D}}$

The electric charge definition,
and the consequent laws of Coulomb and Biot-Savart.
$–$ $\mathbf{\overrightarrow{E}}=\mathbf{\overrightarrow{v}}\times\mathbf{\overrightarrow{B}}$ The electrostatic field.
The Lorentz and Ampere’s forces.
$curl\mathbf{\overrightarrow{E}}=-\frac{\partial\mathbf{\overrightarrow{B}}}{\partial t}$

$\oint{\mathbf{\overrightarrow{E}}\mathrm{d}\mathbf{\overrightarrow{l}}}=-\frac{\partial}{\partial t}\int{\mathbf{\overrightarrow{B}}\mathrm{d}\mathbf{\overrightarrow{S}}}$

The electrodynamic or vortical electrical field.
$curl\mathbf{\overrightarrow{H}}=\mathbf{\overrightarrow{j}}$ The magnetic effect of current.
$curl\mathbf{\overrightarrow{H}}=\frac{\mathrm{d}\mathbf{\overrightarrow{D}}}{\mathrm{d}t}$ $\mathbf{\overrightarrow{S}}=\mathbf{\overrightarrow{E}}\times\mathbf{\overrightarrow{H}}$ The wrong Maxwell's law, which results in the electromagnetic waves.