Difference between revisions of "Magnetism"

From Alt-Sci
Jump to: navigation, search
Line 4: Line 4:
 
The speed of an aetheric beam is the transfer speed of its magnetic field, therefore both the speed and magnetic fields have a lot in common. In particular, both fields of a rotating beam have a common axis of rotation, so the [[wikipedia:Curl (mathematics)|curls]] of these fields are [[wikipedia:Collinearity|collinear]]:
 
The speed of an aetheric beam is the transfer speed of its magnetic field, therefore both the speed and magnetic fields have a lot in common. In particular, both fields of a rotating beam have a common axis of rotation, so the [[wikipedia:Curl (mathematics)|curls]] of these fields are [[wikipedia:Collinearity|collinear]]:
 
:<math>\boxed{curl\mathbf{\overrightarrow{B}}=curl\;k\mathbf{\overrightarrow{v}}\;\;\;\;\;\;\;grad\;k\cdot curl\mathbf{\overrightarrow{v}}=0}\label{collinear_rot_v_B}</math>
 
:<math>\boxed{curl\mathbf{\overrightarrow{B}}=curl\;k\mathbf{\overrightarrow{v}}\;\;\;\;\;\;\;grad\;k\cdot curl\mathbf{\overrightarrow{v}}=0}\label{collinear_rot_v_B}</math>
The magnetic forces are related to a warp of the aetheric beams, which are affected by the shear forces of a surrounding pressure. The pressure gradient force, according to the density definition ([[Mass and inertia#Eq-2|"Mass and inertia", 2]]), is:
+
The magnetic forces are related to a warp of the aetheric beams, which are affected by the shear forces of surrounding pressure. The pressure gradient force, according to the density definition ([[Mass and inertia#Eq-2|"Mass and inertia", 2]]), is:
 
:<math>\rho=\varepsilon_0 B^2\label{magnetic_force_1}</math>
 
:<math>\rho=\varepsilon_0 B^2\label{magnetic_force_1}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=grad\frac{\rho v^2}{2}=\frac{\varepsilon_0}{2}(B^2 grad\;v^2+v^2 grad\;B^2)\label{magnetic_force_2}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=grad\frac{\rho v^2}{2}=\frac{\varepsilon_0}{2}(B^2 grad\;v^2+v^2 grad\;B^2)\label{magnetic_force_2}</math>
This force is decomposed into the components by a known [[Physical field#Vector analysis formulas|vector analysis formula]] for the 3-dimensional space:
+
This force is decomposed into the components by a known [[Physical field#Vector analysis formulas|vector analysis formula]] for 3D space:
 
:<math>\rho\mathbf{\overrightarrow{f}}=\rho(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{v}}+\rho\mathbf{\overrightarrow{v}}\times curl\mathbf{\overrightarrow{v}}+\varepsilon_0 v^2(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{B}}+\varepsilon_0 v^2\mathbf{\overrightarrow{B}}\times curl\mathbf{\overrightarrow{B}}\label{magnetic_force_3}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=\rho(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{v}}+\rho\mathbf{\overrightarrow{v}}\times curl\mathbf{\overrightarrow{v}}+\varepsilon_0 v^2(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{B}}+\varepsilon_0 v^2\mathbf{\overrightarrow{B}}\times curl\mathbf{\overrightarrow{B}}\label{magnetic_force_3}</math>
The <math>(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{B}}</math> component is related to the [[Electricity|electric]] interaction and also to a dependence of the optical bonding force of two parallel light waves on their phase shift [http://www.nature.com/nphoton/journal/v3/n8/abs/nphoton.2009.116.html].<br>
+
The <math>(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{B}}</math> component is related to the [[Electricity|electric]] interaction and also to the dependence of optical bonding force of two parallel light waves on their phase shift [http://www.nature.com/nphoton/journal/v3/n8/abs/nphoton.2009.116.html].<br>
The <math>\mathbf{\overrightarrow{B}}\times curl\mathbf{\overrightarrow{B}}</math> component is related to the centrifugal forces compensation, due to the consequence from \ref{collinear_rot_v_B} for an angular velocity:
+
The <math>\mathbf{\overrightarrow{B}}\times curl\mathbf{\overrightarrow{B}}</math> component is related to the magnetic interaction of vortical flows.
:<math>\mathbf{\overrightarrow{\omega}}\sim curl\mathbf{\overrightarrow{B}}\label{magnetic_force_4}</math>
+
As force, energy and mass are interrelated, the electromagnetic interaction between vortices produces an error of superposition of their beam densities:
The magnetic force, with which a beam acts, is expressed with the [[wikipedia:Speed of light|speed of light]] in vacuum (<math>c^2=1/\varepsilon_0\mu_0</math>) (in the SI):
+
:<math>\rho_\Sigma=\Sigma\rho+\Delta\rho\label{magnetic_force_4}</math>
 +
The magnetic force of a beam is expressed with the [[wikipedia:Speed of light|speed of light]] in vacuum (<math>c^2=1/\varepsilon_0\mu_0</math>) (in the SI):
 
:<math>\rho\mathbf{\overrightarrow{f}}=\frac{v^2}{c^2}(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\label{magnetic_force_5}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=\frac{v^2}{c^2}(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\label{magnetic_force_5}</math>
 
{|class="wikitable" width=100%
 
{|class="wikitable" width=100%
Line 34: Line 35:
 
|}
 
|}
 
The beam speeds reach the speed of light within the material domain.
 
The beam speeds reach the speed of light within the material domain.
{|class="wikitable"
+
 
|+ Two types of the aetheric beams
+
The magnetic force is included into Euler’s equation for a [[Continuum|continuum]]. One of the known [[wikipedia:Magnetohydrodynamics|magneto-hydrodynamics]] equations for an ideal electrically conducting fluid (gas) is Euler's equation, where the magnetic force is [[wikipedia:Ampère's force law|Ampere's force]]:
!Type
+
!Magnetic field
+
!Properties
+
|-
+
|align="center"|Electromagnetic beam
+
|align="center"|transversal<br><math>\mathbf{\overrightarrow{v}}\cdot\mathbf{\overrightarrow{B}}=0</math>
+
|Magnetic compensation of the inertial centrifugal force does not exist, so the beam in absence of the significant external forces is propagating linearly. The energies and densities are summed independently of a vector sum of the magnetic fields.
+
|-
+
|align="center"|Magnetic flux
+
|align="center"|longitudinal<br><math>\mathbf{\overrightarrow{v}}\cdot\mathbf{\overrightarrow{B}}\neq 0</math>
+
|The inertial centrifugal force is partially compensated, and the flow changes own direction easier. The total energy and density is determined by a vector sum of the magnetic fields.
+
|}
+
The magnetic force is included into the Euler’s equation for a [[Continuum|continuum]]. One of the known [[wikipedia:Magnetohydrodynamics|magneto-hydrodynamics]] equations for an ideal electrically conducting fluid (gas) is the Euler's equation, where the magnetic force acts as the [[wikipedia:Ampère's force law|Ampere's force]]:
+
 
:<math>\rho\frac{\partial\mathbf{\overrightarrow{v}}}{\partial t}+\rho(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{v}}+grad(P+U)=(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\tag{9 - SI}</math>
 
:<math>\rho\frac{\partial\mathbf{\overrightarrow{v}}}{\partial t}+\rho(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{v}}+grad(P+U)=(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\tag{9 - SI}</math>
  

Revision as of 16:52, 27 May 2017

Previous chapter ( Aether model ) Table of contents Next chapter ( Electricity )

The speed of an aetheric beam is the transfer speed of its magnetic field, therefore both the speed and magnetic fields have a lot in common. In particular, both fields of a rotating beam have a common axis of rotation, so the curls of these fields are collinear: \[\boxed{curl\mathbf{\overrightarrow{B}}=curl\;k\mathbf{\overrightarrow{v}}\;\;\;\;\;\;\;grad\;k\cdot curl\mathbf{\overrightarrow{v}}=0}\tag{1}\] The magnetic forces are related to a warp of the aetheric beams, which are affected by the shear forces of surrounding pressure. The pressure gradient force, according to the density definition ("Mass and inertia", 2), is: \[\rho=\varepsilon_0 B^2\tag{2}\] \[\rho\mathbf{\overrightarrow{f}}=grad\frac{\rho v^2}{2}=\frac{\varepsilon_0}{2}(B^2 grad\;v^2+v^2 grad\;B^2)\tag{3}\] This force is decomposed into the components by a known vector analysis formula for 3D space: \[\rho\mathbf{\overrightarrow{f}}=\rho(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{v}}+\rho\mathbf{\overrightarrow{v}}\times curl\mathbf{\overrightarrow{v}}+\varepsilon_0 v^2(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{B}}+\varepsilon_0 v^2\mathbf{\overrightarrow{B}}\times curl\mathbf{\overrightarrow{B}}\tag{4}\] The \((\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{B}}\) component is related to the electric interaction and also to the dependence of optical bonding force of two parallel light waves on their phase shift [1].
The \(\mathbf{\overrightarrow{B}}\times curl\mathbf{\overrightarrow{B}}\) component is related to the magnetic interaction of vortical flows. As force, energy and mass are interrelated, the electromagnetic interaction between vortices produces an error of superposition of their beam densities: \[\rho_\Sigma=\Sigma\rho+\Delta\rho\tag{5}\] The magnetic force of a beam is expressed with the speed of light in vacuum (\(c^2=1/\varepsilon_0\mu_0\)) (in the SI): \[\rho\mathbf{\overrightarrow{f}}=\frac{v^2}{c^2}(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\tag{6}\]

Magnetic force for any continuum
Domain SI CGS Simplified \(\tag{7}\)
Vacuum (aether) \[\rho\mathbf{\overrightarrow{f}}=\frac{v^2}{c^2}(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\] \[\rho\mathbf{\overrightarrow{f}}=\frac{v^2}{4\pi c^2}(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\] \[\rho\mathbf{\overrightarrow{f}}=v^2(curl\mathbf{\overrightarrow{B}})\times\mathbf{\overrightarrow{B}}\]
Matter \[\rho\mathbf{\overrightarrow{f}}=(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\] \[\rho\mathbf{\overrightarrow{f}}=\frac{1}{4\pi}(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\] \[\varepsilon\rho\mathbf{\overrightarrow{f}}=c^2(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\] \(\tag{8}\)

The beam speeds reach the speed of light within the material domain.

The magnetic force is included into Euler’s equation for a continuum. One of the known magneto-hydrodynamics equations for an ideal electrically conducting fluid (gas) is Euler's equation, where the magnetic force is Ampere's force: \[\rho\frac{\partial\mathbf{\overrightarrow{v}}}{\partial t}+\rho(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{v}}+grad(P+U)=(curl\mathbf{\overrightarrow{H}})\times\mathbf{\overrightarrow{B}}\tag{9 - SI}\]

See also


Previous chapter ( Aether model ) Table of contents Next chapter ( Electricity )