Difference between revisions of "Electricity"

From Alt-Sci
Jump to: navigation, search
(Definition)
(Definition)
Line 30: Line 30:
 
|}
 
|}
 
The electric force is separated from the magnetic force ([[Magnetism|"Magnetism", 6]]) by separating its fraction from the total magnetic field:
 
The electric force is separated from the magnetic force ([[Magnetism|"Magnetism", 6]]) by separating its fraction from the total magnetic field:
:<math>\mathbf{\overrightarrow{B}}=curl\;k\mathbf{\overrightarrow{v}}</math>
+
:<math>\mathbf{\overrightarrow{B}}=curl\;k\mathbf{\overrightarrow{v}}\;\;\;\;\;\;k=const</math>
Under this condition, the vectors <math>\mathbf{\overrightarrow{B}}</math> and <math>(curl\mathbf{\overrightarrow{B}})</math>, according to a property ([[Magnetism|"Magnetism", 1]]), are [[wikipedia:Collinearity|collinear]], so the magnetic force is zero. The value and sign of the electric charge depends on the <math>k</math> value. In order to determine the <math>k</math> and force (energy) values, the mass density<math>\rho</math> should be included into the equation. The equations, which are consistent with the known electromagnetism laws, are the following:
+
Under this condition, the vectors <math>\mathbf{\overrightarrow{B}}</math> and <math>(curl\mathbf{\overrightarrow{B}})</math>, are [[wikipedia:Collinearity|collinear]] according to a property ([[Magnetism|"Magnetism", 1]]), so the magnetic force is zero. The value and sign of electric charge depends on the <math>k</math> value. In order to determine the <math>k</math> and force (energy) values, the mass density<math>\rho</math> should be included into the equation. The equations, which are consistent with the known electromagnetism laws, are the following:
 
{|class="wikitable" width=100%
 
{|class="wikitable" width=100%
 
!SI
 
!SI
Line 46: Line 46:
 
|}
 
|}
 
<math>\mathbf{\overrightarrow{A}}</math> is a [[wikipedia:Magnetic potential|magnetic potential]] vector;<br>
 
<math>\mathbf{\overrightarrow{A}}</math> is a [[wikipedia:Magnetic potential|magnetic potential]] vector;<br>
<math>q</math> is a volumetric density of the [[Charge and Coulomb's law|electric charge]];<br>
+
<math>q</math> is a volumetric density of [[Charge and Coulomb's law|electric charge]];<br>
 
<math>\varepsilon</math> is a relative [[wikipedia:Permittivity|permittivity]] of the medium (<math>\varepsilon=1</math> for the vacuum);<br>
 
<math>\varepsilon</math> is a relative [[wikipedia:Permittivity|permittivity]] of the medium (<math>\varepsilon=1</math> for the vacuum);<br>
 
<math>c</math> is a [[wikipedia:Speed of light|speed of light]] in vacuum.
 
<math>c</math> is a [[wikipedia:Speed of light|speed of light]] in vacuum.
  
The magnetic potential is the only source of the electric field:
+
The magnetic potential is the only source of electric field:
 
:<math>\rho\mathbf{\overrightarrow{f}}=-q\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - SI}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=-q\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - SI}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=-\frac{q}{c}\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - CGS}</math>
 
:<math>\rho\mathbf{\overrightarrow{f}}=-\frac{q}{c}\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - CGS}</math>
Line 56: Line 56:
 
The magnetic field derivative with respect to time is decomposed as a [[wikipedia:Material derivative|material derivative]] but with an additional term:
 
The magnetic field derivative with respect to time is decomposed as a [[wikipedia:Material derivative|material derivative]] but with an additional term:
 
:<math>\frac{\mathrm{d}\mathbf{\overrightarrow{B}}}{\mathrm{d}t}=\frac{\partial\mathbf{\overrightarrow{B}}}{\partial t}+(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{B}}-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}\tag{4}</math>
 
:<math>\frac{\mathrm{d}\mathbf{\overrightarrow{B}}}{\mathrm{d}t}=\frac{\partial\mathbf{\overrightarrow{B}}}{\partial t}+(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{B}}-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}\tag{4}</math>
The term <math>-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}</math> expresses that the deceleration of a beam compresses it (increases <math>\mathbf{\overrightarrow{B}}</math>), and the acceleration rarefies it (decreases <math>\mathbf{\overrightarrow{B}}</math>).
+
The term <math>-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}</math> expresses that deceleration of a beam compresses it (increases <math>\mathbf{\overrightarrow{B}}</math>), and acceleration rarefies it (decreases <math>\mathbf{\overrightarrow{B}}</math>).
  
 
The electric field is divided into two components with different causes of the forces:
 
The electric field is divided into two components with different causes of the forces:

Revision as of 09:35, 28 May 2017

Previous chapter ( Magnetism ) Table of contents Next chapter ( Aetheric vortex )

Corresponding Wikipedia article: Electric field

Definition

The electric field is not a basic parameter of the aether state, but this is a force field, which exists relatively to the affected objects.

Comparative summary of the electric and magnetic fields
Field
Electrical Magnetic
Source The magnetized aether and the motion or variation of the magnetic field over time. Undefined.
Manifestation Force, which affects the electrically charged aetheric vortices. Force, density.
Reference frame Depends on frame, if the force is caused by a motion. Independent.
Spatial dimensionality At least 3, which is required for the vortices. At least 2.

The electric force is separated from the magnetic force ("Magnetism", 6) by separating its fraction from the total magnetic field: \[\mathbf{\overrightarrow{B}}=curl\;k\mathbf{\overrightarrow{v}}\;\;\;\;\;\;k=const\] Under this condition, the vectors \(\mathbf{\overrightarrow{B}}\) and \((curl\mathbf{\overrightarrow{B}})\), are collinear according to a property ("Magnetism", 1), so the magnetic force is zero. The value and sign of electric charge depends on the \(k\) value. In order to determine the \(k\) and force (energy) values, the mass density\(\rho\) should be included into the equation. The equations, which are consistent with the known electromagnetism laws, are the following:

SI CGS Simplified \(\tag{1}\)
\[\rho\mathbf{\overrightarrow{v}}=-q\mathbf{\overrightarrow{A}}\] \[\rho\mathbf{\overrightarrow{v}}=-\frac{q}{c}\mathbf{\overrightarrow{A}}\] \[\varepsilon\rho\mathbf{\overrightarrow{v}}=-q\mathbf{\overrightarrow{A}}\]
\[\mathbf{\overrightarrow{B}}=curl\mathbf{\overrightarrow{A}}\] \(\tag{2}\)

\(\mathbf{\overrightarrow{A}}\) is a magnetic potential vector;
\(q\) is a volumetric density of electric charge;
\(\varepsilon\) is a relative permittivity of the medium (\(\varepsilon=1\) for the vacuum);
\(c\) is a speed of light in vacuum.

The magnetic potential is the only source of electric field: \[\rho\mathbf{\overrightarrow{f}}=-q\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - SI}\] \[\rho\mathbf{\overrightarrow{f}}=-\frac{q}{c}\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - CGS}\] \[\varepsilon\rho\mathbf{\overrightarrow{f}}=-q\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{3 - Sim.}\] The magnetic field derivative with respect to time is decomposed as a material derivative but with an additional term: \[\frac{\mathrm{d}\mathbf{\overrightarrow{B}}}{\mathrm{d}t}=\frac{\partial\mathbf{\overrightarrow{B}}}{\partial t}+(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{B}}-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}\tag{4}\] The term \(-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}\) expresses that deceleration of a beam compresses it (increases \(\mathbf{\overrightarrow{B}}\)), and acceleration rarefies it (decreases \(\mathbf{\overrightarrow{B}}\)).

The electric field is divided into two components with different causes of the forces:

Field Cause Law
Electrostatic
(potential, conservative)
Magnetized aether motion.

\[(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{B}}-(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}\neq 0\]

Lorentz and Ampere force
Vortical
(dynamic)
Magnetic flux variation.

\[\frac{\partial\mathbf{\overrightarrow{B}}}{\partial t}\neq 0\]

Faraday’s law

Electrostatic field

The formula for the electrostatic field, which is produced by the moving charge \(q\) with respect to the source of a constant (in time) magnetic field \(\mathbf{\overrightarrow{B}}\) with a velocity \(\mathbf{\overrightarrow{v}}\) is: \[\rho\mathbf{\overrightarrow{f}}=q\mathbf{\overrightarrow{v}}\times\mathbf{\overrightarrow{B}}\tag{5 - SI}\] \[\rho\mathbf{\overrightarrow{f}}=q\frac{\mathbf{\overrightarrow{v}}}{c}\times\mathbf{\overrightarrow{B}}\tag{5 - CGS}\] \[\varepsilon\rho\mathbf{\overrightarrow{f}}=q\mathbf{\overrightarrow{v}}\times\mathbf{\overrightarrow{B}}\tag{5 - Sim.}\] The proof of (5) is reduced to the proof of an equation: \[\mathbf{\overrightarrow{v}}\times\mathbf{\overrightarrow{B}}=-\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}\tag{6}\] Applying of the curl operator to both sides of (6) gives: \[curl(\mathbf{\overrightarrow{v}}\times\mathbf{\overrightarrow{B}})=-curl\frac{\mathrm{d}\mathbf{\overrightarrow{A}}}{\mathrm{d}t}=-\frac{\mathrm{d}\mathbf{\overrightarrow{B}}}{\mathrm{d}t}=-(\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{B}}+(\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}\tag{7}\] Also, according to the known identity, which is applicable to the 3-dimensional space: \[curl(\mathbf{\overrightarrow{v}}\times\mathbf{\overrightarrow{B}})=(div\mathbf{\overrightarrow{B}}+\mathbf{\overrightarrow{B}}\cdot\nabla)\mathbf{\overrightarrow{v}}-(div\mathbf{\overrightarrow{v}}+\mathbf{\overrightarrow{v}}\cdot\nabla)\mathbf{\overrightarrow{B}}\tag{8}\] Since the magnetic field is vortical (\(div\mathbf{\overrightarrow{B}}=0\)), and the velocity field consists of the vortical and/or uniform components (\(div\mathbf{\overrightarrow{v}}=0\)), the formula (5) is proven.


Previous chapter ( Magnetism ) Table of contents Next chapter ( Aetheric vortex )